Virginia Long-Term Care Clinician Network Monthly Forum

February 21, 2024

Welcome!

As you join, please turn on cameras and mic or unmute your phone and say hello to your Virginia colleagues. We all have a common bond: the choice to serve in a unique area of health care. During the presentation we can mute ourselves until it is time for more interaction.

Let's Network!

Please use the chat box:

- Your name and region/city/town
- Is your facility masking everywhere or just in required rooms?

Thank you for taking care of Virginia's residents of PACE, assisted living and nursing homes!

To find us, resources or archived Forum presentations, come to our website.

Welcome New Members!

Brad Murray, MD - NW Region

Emily Johnson, NP - NW Region

Ja'Nay Crippen-Derry, DHA MSN RN - Central Region

Kimberley Richards, FNP-BC - Central Region

Lindsey Price, Allied Health - NW Region

Michael Saval, DO - Central & SW Region

Our Network is 234 members strong!

Chat Waterfall

Answer in chat, but do not press send until we count down:

As we move through state budget time, which is scheduled to adjourn March 9, if you had a hand in the bills and budget, how would you improve LTC?

COPD in LTC: an Update

Christian Bergman, MD, CMD, FACP Assistant Professor, Division of Geriatric Medicine, VCU

Learning Objectives

- 1. Provide an overview of the latest 2023/2024 GOLD guidelines
- 2. Discuss LTC specific issues in regards to COPD clinical management
- 3. Review management of acute exacerbation of COPD

GOLD Guidelines

Global Initiative for Chronic Obstructive Lung Disease 2024
Teaching
Slide Set

Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease

This slide set is restricted for academic and educational purposes only. Use of the slide set, or of individual slides, for commercial or promotional purposes requires approval from GOLD.

Itccn.vcu.edu

2024

Teaching Slide Set

Figure 2.2

Consider the diagnosis of COPD, and perform spirometry, if any of these clinical indicators are present:

(these indicators are not diagnostic themselves, but the presence of multiple key indicators increases the probability of the presence of COPD; in any case, spirometry is required to establish a diagnosis of COPD)

Dyspnea that is

Recurrent wheeze

Chronic cough

Recurrent lower respiratory tract infections

History of risk factors

Other Causes of Chronic Cough

INTRATHORACIC

- Asthma
- Lung Cancer
- Tuberculosis
- Bronchiectasis
- Left Heart Failure
- Interstitial Lung Disease
- Cystic Fibrosis
- Idiopathic Cough

EXTRATHORACIC

Chronic Allergic Rhinitis

Figure 2.1

- Post Nasal Drip Syndrome (PNDS)
- Upper Airway Cough Syndrome (UACS)
- Gastroesophageal Reflux
- Medication (e.g., ACE Inhibitors)

Differential Diagnosis of COPD

Figure 2.3

Diagnosis	Suggestive Features
COPD	Symptoms slowly progressive
	History of tobacco smoking or other risk factors
Asthma	Variable airflow obstruction
	Symptoms vary widely from day to day
	Symptoms worse at night/early morning
	Allergy, rhinitis, and/or eczema also present
	Often occurs in children
	Family history of asthma
Congestive heart failure	Chest X-ray shows dilated heart, pulmonary edema
	Pulmonary function tests indicate volume restriction, not airflow obstruction
Bronchiectasis	Large volumes of purulent sputum
	Commonly associated with bacterial infection
	Chest X-ray/HRCT shows bronchial dilation
Tuberculosis	Onset at all ages
	Chest X-ray shows lung infiltrate
	Microbiological confirmation
	High local prevalence of tuberculosis
Obliterative	Can occur in children
bronchiolitis	Seen after lung or bone marrow transplantation
	HRCT on expiration shows hypodense areas
Diffuse panbronchiolitis	Predominantly seen in patients of Asian descent
	Most patients are male and nonsmokers
	Almost all have chronic sinusitis
	Chest X-ray & HRCT show diffuse small centrilobular nodular opacities & hyperinflation

These features tend to be characteristic of the respective diseases, but are not mandatory. For example, a person whas never smoked may develop COPD (especially in LMICs where other risk factors may be more important than ciga smoking).

2024

Teaching Slide Set

GOLD Grades and Severity of Airflow Obstruction in COPD (based on post-bronchodilator FEV1)

Figure 2.7

In COPD patients (FEV1/FVC < 0.7):

GOLD 1:	Mild	FEV1 ≥ 80% predicted
GOLD 2:	Moderate	50% ≤ FEV1 < 80% predicted
GOLD 3:	Severe	30% ≤ FEV1 < 50% predicted
GOLD 4:	Very Severe	FEV1 < 30% predicted

Your patient is a 67-year-old male who complains of progressively worsening shortness of breath with exertion over the last year. He currently smokes half a pack of cigarettes daily and has accumulated 45 pack years. He uses a short acting beta agonist 3-4 times a day with limited relief. He is no longer able to ride a bike with his grandchildren.

His last hospitalization was 4 months ago secondary to right lower lobe pneumonia. He does not complain of weight loss or loss of appetite. He has a past medical history of dietary controlled diabetes and mild osteoarthritis.

Medications include Albuterol and Celecoxib.

On exam respiratory rate is 22 per minute; chest exam reveals mild end expiratory wheezing without use of accessory muscles of respiration and no retractions. No clubbing, cyanosis or lower extremity edema is noted. Spirometry reveals an FVC of 78% predicted, FEV1 of 62% predicted and FEV1/FVC of 68%, post bronchodilator.

Itccn.vcu.edu

Your patient is a 67-year-old male who complains of progressively worsening shortness of breath with exertion over the last year. He currently smokes half a pack of cigarettes daily and has accumulated 45 pack years. He uses a short acting beta agonist 3-4 times a day with limited relief. He is no longer able to ride a bike with his grandchildren.

His last hospitalization was 4 months ago secondary to right lower lobe pneumonia. He does not complain of weight loss or loss of appetite. He has a past medical history of dietary controlled diabetes and mild osteoarthritis.

Medications include Albuterol and Celecoxib.

On exam respiratory rate is 22 per minute; chest exam reveals mild end expiratory wheezing without use of accessory muscles of respiration and no retractions. No clubbing, cyanosis or lower extremity edema is noted. Spirometry reveals an FVC of 78% predicted, FEV1 of 62% predicted and FEV1/FVC of 68%, post bronchodilator.

Question 1: Based on GOLD guidelines your patient:

- A. Has mild COPD.
- B. Has moderate COPD.
- C. Has severe COPD.
- D. Has very severe COPD.
- E. Is at risk of developing COPD.

Your patient is a 67-year-old male who complains of progressively worsening shortness of breath with exertion over the last year. He currently smokes half a pack of cigarettes daily and has accumulated 45 pack years. He uses a short acting beta agonist 3-4 times a day with limited relief. He is no longer able to ride a bike with his grandchildren.

His last hospitalization was 4 months ago secondary to right lower lobe pneumonia. He does not complain of weight loss or loss of appetite. He has a past medical history of dietary controlled diabetes and mild osteoarthritis.

Medications include Albuterol and Celecoxib.

On exam respiratory rate is 22 per minute; chest exam reveals mild end expiratory wheezing without use of accessory muscles of respiration and no retractions. No clubbing, cyanosis or lower extremity edema is noted. Spirometry reveals an FVC of 78% predicted, FEV1 of 62% predicted and FEV1/FVC of 68%, post bronchodilator.

Question One

It is important to determine the severity of COPD as this impacts treatment. Based on GOLD guidelines spirometry is indicated in patients with COPD to facilitate a diagnosis and determine severity. An FEV1/ FVC ratio less than 70% is diagnostic of obstruction. The severity of obstruction is based on the FEV1. If the FEV1 is above or equal to 80% of predicted, the patient has mild COPD. If the FEV1 is between 50-80% of predicted the patient has moderate COPD making answer B correct. Severe COPD is diagnosed if the FEV1 is between 30-50% of predicted and very severe COPD is diagnosed when the FEV1 is less than 30% of predicted (below 50% with evidence of respiratory failure). The "at risk" category is no longer used.

ltccn.vcu.edu

Your patient is a 67-year-old male who complains of progressively worsening shortness of breath with exertion over the last year. He currently smokes half a pack of cigarettes daily and has accumulated 45 pack years. He uses a short acting beta agonist 3-4 times a day with limited relief. He is no longer able to ride a bike with his grandchildren.

His last hospitalization was 4 months ago secondary to right lower lobe pneumonia. He does not complain of weight loss or loss of appetite. He has a past medical history of dietary controlled diabetes and mild osteoarthritis.

Medications include Albuterol and Celecoxib.

On exam respiratory rate is 22 per minute; chest exam reveals mild end expiratory wheezing without use of accessory muscles of respiration and no retractions. No clubbing, cyanosis or lower extremity edema is noted. Spirometry reveals an FVC of 78% predicted, FEV1 of 62% predicted and FEV1/FVC of 68%, post bronchodilator.

Question 2: Based on GOLD guidelines the most appropriate next step would be to initiate:

- A. An inhaled corticosteroid.
- B. A Leukotriene inhibitor.
- C. Daily oral steroid.
- D. Long acting anticholinergic agent.
- E. Nebulized short acting beta 2 agonist.

Your patient is a 67-year-old male who complains of progressively worsening shortness of breath with exertion over the last year. He currently smokes half a pack of cigarettes daily and has accumulated 45 pack years. He uses a short acting beta agonist 3-4 times a day with limited relief. He is no longer able to ride a bike with his grandchildren.

His last hospitalization was 4 months ago secondary to right lower lobe pneumonia. He does not complain of weight loss or loss of appetite. He has a past medical history of dietary controlled diabetes and mild osteoarthritis.

Medications include Albuterol and Celecoxib.

On exam respiratory rate is 22 per minute; chest exam reveals mild end expiratory wheezing without use of accessory muscles of respiration and no retractions. No clubbing, cyanosis or lower extremity edema is noted. Spirometry reveals an FVC of 78% predicted, FEV1 of 62% predicted and FEV1/FVC of 68%, post bronchodilator.

Question Two

Our patient has moderate COPD based on an FEV1/FVC ratio less than 70% and an FEV1 between 5680%. GOLD guidelines recommend the use of a long acting bronchodilator for patients with moderate COPD. A long acting cholinergic (answer D) such as tiotropium—should be considered in our patient. An inhaled corticosteroid may be indicated in patients with severe or very severe disease in combi—nation with a long acting bronchodilator. Leukotrine inhibitors are indicated in asthma but are not routinely used in patients with COPD. Daily oral steroids may be utilized in some patients with very severe debilitating COPD when the perceived benefits outweigh potential side effec—ts. Short acting beta 2 agonists may be used on an as needed basis to supplement long acting bronchodilators.

Management of COPD

Figure 3.2

Diagnosis Symptoms Risk factors **Initial Assessment** Spirometry (repeat if borderline) FEV1 – GOLD 1 - 4 Symptoms (CAT or mMRC) 1 GOLD **Exacerbation history** ABE **Adjust** Smoking status Review Blood eosinophil count Pharmacotherapy α1- antitrypsin Non-pharmacological Symptoms (CAT or mMRC) therapy Comorbidities Exacerbations Smoking status **Initial Management** Exposure to other risk factors Inhaler technique & adherence Smoking cessation Physical activity and exercise Vaccination Need for pulmonary rehabilitation Active lifestyle and exercise Self management skills Initial pharmacotherapy breathlessness Self management education written action plan risk factor management Need for oxygen, NIV, lung volume inhaler technique reduction, palliative approaches breathlessness Vaccination written action plan Management of comorbidities Manage comorbidities Spirometry (at least annually)

2024
Teaching

Slide Set

of CT in Stable COPD

Figure 2.11

Differential Diagnosis

- Frequent exacerbations with excessive cough with sputum production, raising concern for bronchiectasis or atypical infection
- Symptoms out of proportion to disease severity based on lung function testing

Lung Volume Reduction

- Endobronchial valve therapy may be a therapeutic option for patients if they demonstrate postbronchodilator FEV1 between 15% to 45% and evidence of hyperinflation
- Lung volume reduction surgery may be a therapeutic option for patients with hyperinflation, severe upper lobe predominant emphysema and low exercise capacity after pulmonary rehabilitation

Lung Cancer Screening

 Annual low-dose CT scan is recommended for lung cancer screening in patients with COPD due to smoking according to recommendations for the general population

Teaching Slide Set

≥ 2 moderate exacerbations or ≥ 1 leading to hospitalization **GROUP E**

LABA + LAMA*

consider LABA+LAMA+ICS* if blood eos ≥ 300

0 or 1 moderate exacerbations (not leading to hospital admission) **GROUP A**

A bronchodilator

GROUP B

LABA + LAMA*

mMRC 0-1, CAT < 10

 $mMRC \ge 2$, $CAT \ge 10$

Exacerbations refers to the number of exacerbations per year; eos: blood eosinophil count in cells per microliter; mMRC: modified Medical Research Council dyspnea questionnaire; CAT™: COPD Assessment Test™.

^{*}Single inhaler therapy may be more convenient and effective than multiple inhalers; single inhalers improve adherence to treatment

- SABA: albuterol, levoalbuterol
- LABA: salmeterol, formoterol
- ICS: fluticasone, mometasone, budesonide, beclomethasone
- SAMA: iptratropium
- LAMA: umeclidinium, tiotropium, aclidinium
- COMBOs
- LABA/ICS: Advair, Breo, Dulera, Symbicort, Wixela
- LABA/LAMA: Anoro, Stiolto,
- LABA/LAMA/ICS: Trelegy
- SABA/SAMA: Combivent, Duoneb

https://allergyasthmanetwork.org/news/inhalers-at-a-glance-posters-resources/ - free PDF / poster

Teaching

- IF RESPONSE TO INITIAL TREATMENT IS APPROPRIATE, MAINTAIN IT.
- - **IF NOT:** Check adherence, inhaler technique and possible interfering comorbidities
 - Consider the predominant treatable trait to target (dyspnea or exacerbations)
 - Use exacerbation pathway if both exacerbations and dyspnea need to be targeted
 - Place patient in box corresponding to current treatment & follow indications
 - Assess response, adjust and review
 - These recommendations do not depend on the ABE assessment at diagnosis

LABA or LAMA LABA + LAMA* · Consider switching inhaler device or molecules • Implement or escalate non-pharmacological treatment(s) • Investigate (and treat) other causes of dyspnea

DYSPNEA

^{*}Single inhaler therapy may be more convenient and effective than multiple inhalers; single inhalers improve adherence to treatment

Exacerbations refers to the number of exacerbations per year

2024 **Slide Set**

^{**}Consider de-escalation of ICS if pneumonia or other considerable side-effects. In case of blood eos ≥ 300 cells/µl de-escalation is more likely to be associated with the development of exacerbations

Device	Correct technique	Device	Correct technique
"Press and breathe" pMDI	Remove mouthpiece cap Shake inhaler (suspensions only) Hold inhaler upright Breathe out Place mouthpiece between lips Fire while breathing in deeply and slowly	"Press and breathe" pMDI	Plus spacer Remove mouthpiece cap Shake inhaler (suspensions only) Hold inhaler upright Insert pMDI into spacer Breathe out Fire while breathing in deeply and slowly
	Continue to inhale after firing Hold breath (10 s)		Continue to inhale after firing
Breath-actuated pMDI	Remove mouthpiece cap Shake inhaler (suspensions only) Hold inhaler upright Prepare device (e.g. lift lever) Breathe out Place mouthpiece between lips	DPIs	Hold breath (10 s) Remove cover (device specific) Load dose (device specific) Pierce capsule (single-dose devices) Breathe out Place mouthpiece between lips
	Breathe in deeply and slowly Continue to inhale after firing		Inhale deeply and quickly
	Hold breath (10 s)		Hold breath (10 s) Store in cool dry place

pMDI: pressurised metered-dose inhaler; DPI: dry powder inhaler. *: crucial error, likely to result in zero lung deposition of drug; *: manufactured by Boehringer Ingelheim GmbH & Co. KG, Ingelheim, Germany; 1: error that may be crucial.

Pictorial guide for Inhale	r devices. The inhaler	colour will	vary depending on conte	nt.

Accuhaler		Pressurised metered dose inhalers (pMDI)	3.
Dry powder inhaler		Co-prescribe a spacer with pMDI	
Example of inhalers with this device:		Example of inhalers with this device:	
Ventolin, Flixotide, Seretide and Serevent Accuhaler	- Hamilton	Ventolin & Seretide Evohaler, Sereflo, Clenil Modulite, FostairpMDI	
Link to Accuhaler Inhaler Technique Video		Link to pMDI Inhaler Technique Video Link to use of SpacerVideos	
Easi-Breathe		NEXThaler	
Breath actuated inhaler		Dry powder inhaler	100
Example of inhalers with this device:		Currently, the only inhaler with this device is Fostair NEXThaler	3
Qvar, Salamol		Link to NEXThaler Inhaler Technique Video	
Link to Easi-Breathe Inhaler Technique Video			
Easyhaler		Spiromax	
Dry powder inhaler		Dry powder inhaler	
Example of inhalers with this device:		Example of Inhalers with thisdevice:	
Easyhaler Salbutamol, Easyhaler Beclometasone		DuoResp	
Link to Easyhaler Inhaler Technique Video		Link to Spiromax Inhaler Technique Video	
Ellipta		Turbohaler	
Dry powder inhaler	f	Dry powder inhaler	
Example of inhalers with this device:		Example of inhalers with this device:	1
Relvar, Anoro, Incruse	30	Bricanyl, Oxis, Pulmicort, Symbicort	6 10
Link to Ellipta Inhaler TechniqueVideo	30	Link to Turbohaler Inhaler Technique Video	

https://err.ersjournals.com/content/14/96/102 2005

Device	Advantages	Disadvantages
"Press and breathe" pMDI	Compact Portable 100+ doses	Contains propellants Not breath-actuated Many patients cannot use it correctly (e.g.
	Convenient	coordination difficulties, "cold Freon" effect) Usually low lung deposition/high oropharyngeal
		deposition
	Quick to use	
	Relatively cheap Cannot contaminate contents	
Breath-actuated pMDI	Compact	Contains propellants
	Portable	"Cold Freon" effect
	100+ doses	Usually low lung deposition/high oropharyngeal deposition
	Convenient	
	Quick to use	
	Breath-actuated (no coordination needed) Cannot contaminate contents	
"Press and breathe" pMDI plus spacer	100+ doses	Contains propellants
	Quick to use Easier to coordinate	Not very portable or convenient Not breath-actuated
	Tidal breathing often OK	Plastic spacers may acquire static charge
	Less oropharyngeal deposition	That opacies may acquire state charge
	Usually higher lung deposition than a pMDI	
DPI	Compact	Work poorly if inhalation is not forceful enough
	Portable	Many patients cannot use them correctly (e.g. capsule handling problems for elderly)
	Convenient (multi-dose devices)	Most types are moisture sensitive
	Quick to use	
	Breath-actuated (no coordination needed) Usually higher lung deposition than a pMDI	
	Do not contain propellants	
Respimat⊛ Soft Mist [™] Inhaler*	Compact	Not breath-actuated
	Portable	Not currently available in most countries
	Multi-dose device (1 month's supply)	
	Convenient	
	Probably easier to use correctly than pMDI High lung deposition	
	Does not contain propellants	

pMDI: pressurised metered-dose inhaler; DPI: dry powder inhaler. *: manufactured by Boehringer Ingelheim GmbH & Co. KG, Ingelheim, Germany.

TABLE 3 Crucial errors in inhaler use					
Error			Devices affected		
	pMDI	BA pMDI	pMDI + spacer	DPI	Respimat _® Soft Mist [™] Inhaler ⁵
Failure to remove mouthpiece cap or device cover	/	/	/	1	/
Incorrect preparation/priming of device or loading of dose*		/		/	/
Failure to pierce capsule				√ *	
Inhaler upside down	/	/	✓		
Breathing out into device*				1	
Firing device at or after end of inhalation*	/				/
Open-mouth inhalation technique		/		1	
Weak or very slow inhalation*		1	/ +	J.	
Inhaling through nose	/	1	/	/	1
Stopping inhalation as device is fired*	/	/	/		/

pMDI: pressurised metered-dose inhaler; BA pMDI: breath-actuated pMDI; DPI: dry powder inhaler. *: common errors; *: single-dose devices; *: failure to trigger device; *: failure to open spacer valve; *: too slow to aerosolise the dose; *: manufactured by Boehringer Ingelheim GmbH & Co. KG, Ingelheim, Germany.

Basic Principles for Appropriate Inhalation Device Choice

Figure 3.11

- · Availability of the drug in the device
- Patients' beliefs, satisfaction with current and previous devices and preferences need to be assessed and considered
- The number of different device types should be minimized for each patient. Ideally, only one device type should be used
- Device type should not be switched in the absence of clinical justification nor without proper information, education and medical follow-up
- Shared decision-making is the most appropriate strategy for inhalation device choice
- Patient's cognition, dexterity and strength must be taken into account
- Patient's ability to perform the correct specific inhalation maneuver for the device must be assessed:
- Dry powder inhalers are appropriate only if the patient can make a forceful and deep inhalation.
 Check visually that the patient can inhale forcefully through the device if there is doubt assess objectively or choose alternative device
- Metered-dose inhalers and, to a lesser extent, soft mist inhalers require coordination between
 device triggering and inhalation and patients need to be able to perform a slow and deep
 inhalation. Check visually that the patient can inhale slowly and deeply from the device if there
 is doubt consider adding a spacer/VHC or choose an alternative device
- For patients unable to use an MDI (with or without spacer/VHC), SMI or DPI a nebulizer should be considered
- Other factors to consider include size, portability, cost
- Smart inhalers may be useful if there are issues with adherence/persistence or inhalation technique (for devices that can check it)
- Physicians should prescribe only devices they (and the other members of the caring team) know how to use

2024

Teaching Slide Set

2024

Teaching Slide Set

Oxygen Therapy

- The long-term administration of oxygen increases survival in patients with severe chronic resting arterial hypoxemia (Evidence A)
- In patients with stable COPD and moderate resting or exerciseinduced arterial desaturation, prescription of long-term oxygen does not lengthen time to death or first hospitalization or provide sustained benefit in health status, lung function and 6-minute walk distance (Evidence A)
- Resting oxygenation at sea level does not exclude the development of severe hypoxemia when traveling by air (Evidence C)

Ventilatory Support

- NPPV may improve hospitalization-free survival in selected patients after recent hospitalization, particularly in those with pronounced daytime persistent hypercapnia (PaCO₂ > 53 mmHg) (Evidence B)
- In patients with severe chronic hypercapnia and a history of hospitalization for acute respiratory failure, long-term noninvasive ventilation may be considered (Evidence B)

Arterial hypoxemia defined as:

 $PaO_2 \le 55 \text{ mmHg } (7.3 \text{ kPa}) \text{ or } SaO_2 < 88\%$

01

PaO₂ > 55 but < 60 mmHg (> 7.3 kPa but < 8 kPa) with right heart failure or erythrocytosis

Prescribe supplemental oxygen and titrate to keep SaO₂ ≥ 90%

Recheck in 60 to 90 days to assess:

- If supplemental oxygen is still indicated
- If prescribed supplemental oxygen is effective

Evidence Supporting a Reduction in Mortality with Pharmacotherapy and Non-pharmacotherapy in COPD Patients Figure 3.17

Therapy	RCT*	Treatment effect on mortality	Patient characteristics
Pharmacotherapy			
LABA+LAMA+ICS ¹	Yes	Single inhaler triple therapy compared to dual LABD therapy relative risk reduction: IMPACT: HR 0.72 (95% CI: 0.53, 0.99) ^{1a} ETHOS: HR 0.51 (95% CI: 0.33, 0.80) ^{1b}	Symptomatic people with a history of frequent and/or severe exacerbations
Non-pharmacologi	cal Thera	ру	
Smoking cessation ²	Yes	HR for usual care group compared to intervention group (smoking cessation) HR 1.18 (95% CI: 1.02, 1.37) ²	Asymptomatic or mildly symptomatic
Pulmonary rehabilitation ^{3#}	Yes	Old trials: RR 0.28 (95% CI 0.10, 0.84) ^{3a} New trials: RR 0.68 (95% CI 0.28, 1.67) ^{3b}	Hospitalized for exacerbations of COPD (during or ≤ 4 weeks after discharge)
Long-term oxygen therapy ⁴	Yes	NOTT: ≥ 19 hours of continuous oxygen vs ≤ 13 hours: 50% reduction ^{4a} MRC: ≥ 15 hours vs no oxygen: 50% reduction ^{4b}	PaO ₂ ≤ 55 mmHg or < 60 mmHg with <i>cor pulmonale</i> or secondary polycythemia
Noninvasive positive pressure ventilation ⁵	Yes	12% in NPPV (high IPAP level) and 33% in control HR 0.24 (95% CI 0.11, 0.49) ⁵	Stable COPD with marked hypercapnia
Lung volume reduction surgery ⁶	Yes	0.07 deaths/person-year (LVRS) vs 0.15 deaths/ person-year (UC) RR for death 0.47 (p = 0.005) ⁶	Upper lobe emphysema and low exercise capacity

^{*}RCT with pre-specified analysis of the mortality outcome (primary or secondary outcome); "Inconclusive results likely due to differences in pulmonary rehabilitation across a wide range of participants and settings.

ICS: inhaled corticosteroid; IPAP: inspiratory positive airway pressure; LABA: long-acting beta-agonist; LABD: long-acting bronchodilator; LAMA: long-acting anti-muscarinic; LTOT: long-term oxygen therapy; NPPV: noninvasive positive pressure ventilation; LVRS: lung volume reduction surgery; UC: usual treatment control group.

2024 Teaching Slide Set

^{1.} a) IMPACT trial (Lipson et al. 2020) and b) ETHOS trials (Martinez et al. 2021); 2.Lung Health Study (Anthonisen et al. 2005); 3. a) Puhan et al. (2011) and b) Puhan et al. 2016; 4. a) NOTT (NOTT, 1980) and b) MRC (MRC, 1981); 5. Kohlein trial (Kohlein et al. 2014); 6. NETT trial (Fishman et al. 2003)

- Combinations of SABA and SAMA are superior compared to either medication alone in improving FEV1 and symptoms (Evidence A)
- LAMAs have a greater effect on exacerbation reduction compared with LABAs (Evidence A) and decrease hospitalizations (Evidence B)
- Combinations can be given as single inhaler or multiple inhaler treatment. Single inhaler therapy may be more convenient and effective than multiple inhalers

Oral Glucocorticoids	 Long-term use of oral glucocorticoids has numerous side effects (Evidence A) with no evidence of benefits (Evidence C)
PDE4 Inhibitors	 In patients with chronic bronchitis, severe to very severe COPD and a history of exacerbations: Roflumilast improves lung function and reduces moderate and severe exacerbations (Evidence A)
Antibiotics	 Long-term azithromycin and erythromycin therapy reduces exacerbations over one year (Evidence A) Preferentially, but not only in former smokers with exacerbations despite appropriate therapy, azithromycin can be considered (Evidence B) Treatment with azithromycin is associated with an increased incidence of bacterial resistance (Evidence A) and hearing test impairments (Evidence B)

Key Points

Regular treatment with ICS increases the risk of pneumonia especially in those with severe disease (Evidence A) An ICS combined with a LABA is more effective than the individual components in

- An ICS combined with a LABA is more effective than the individual components in improving lung function and health status and reducing exacerbations in patients with exacerbations and moderate to very severe COPD (Evidence A)
- We do not encourage the use of a LABA+ICS combination in COPD. If there is an indication for an ICS the combination LABA+LAMA+ICS has been shown to be superior to LABA+ICS and is therefore the preferred choice

Inhaled Corticosteroids

- Triple inhaled therapy of LABA+LAMA+ICS improves lung function, symptoms and health status, and reduces exacerbations, compared to LABA+ICS, LABA+LAMA or LAMA monotherapy (Evidence A). Recent data suggesta beneficial effect of triple inhaled therapy versus fixed-dose LABA+LAMA combinations on mortality in symptomatic COPD patients with a history of frequent and/or severe exacerbations
- If patients with COPD have features of asthma, treatment should always contain an ICS
- Independent of ICS use, there is evidence that a blood eosinophil count < 2% increases the risk of pneumonia (Evidence C)
- Combinations can be given as single or multiple inhaler therapy. Single inhaler therapy may be more convenient and effective than multiple inhalers

2024

Teaching Slide Set

Factors to consider when adding ICS to long-acting bronchodilators:

(note the scenario is different when considering ICS withdrawal)

STRONGLY
FAVORS USE

History of hospitalization(s) for exacerbations of COPD[#]

≥ 2 moderate exacerbations of COPD per year[#]

Blood eosinophils ≥ 300 cells/μL

History of, or concomitant asthma

1 moderate exacerbation of COPD per year[#]

Blood eosinophils 100 to < 300 cells/μL

Repeated pneumonia events

Blood eosinophils < 100 cells/μL

History of mycobacterial infection

Potential Indications for Hospitalization Assessment*

Figure 4.4

- Severe symptoms such as sudden worsening of resting dyspnea, high respiratory rate, decreased oxygen saturation, confusion, drowsiness
- · Acute respiratory failure
- Onset of new physical signs (e.g., cyanosis, peripheral edema)
- · Failure of an exacerbation to respond to initial medical management
- Presence of serious comorbidities (e.g., heart failure, newly occurring arrhythmias, etc.)
- Insufficient home support

Key Points for the Management of Exacerbations

Figure 4.6

- Short-acting inhaled beta₂-agonists, with or without short-acting anticholinergics, are recommended as the initial bronchodilators to treat an acute exacerbation (Evidence C)
- Systemic corticosteroids can improve lung function (FEV1), oxygenation and shorten recovery time and hospitalization duration. Duration of therapy should not normally be more than 5 days (Evidence A)
- Antibiotics, when indicated, can shorten recovery time, reduce the risk of early relapse, treatment
 failure, and hospitalization duration. Duration of therapy should normally be 5 days (Evidence B)
- Methylxanthines are not recommended due to increased side effect profiles (Evidence B)
- Non-invasive mechanical ventilation should be the first mode of ventilation used in COPD patients
 with acute respiratory failure who have no absolute contraindication because it improves gas
 exchange, reduces work of breathing and the need for intubation, decreases hospitalization
 duration and improves survival (Evidence A)

2024

Teaching Slide Set

Management of Severe but not Life-threatening Exacerbations*

Figure 4.5

Assess severity of symptoms, blood gases, chest radiograph

Administer supplemental oxygen therapy, obtain serial arterial blood gas, venous blood gas and pulse oximetry measurements

Bronchodilators:

- Increase doses and/or frequency of short-acting bronchodilators
- Combine short-acting beta 2-agonists and anticholinergics
- Consider use of long-acting bronchodilators when patient becomes stable
- Use spacers or air-driven nebulizers when appropriate

Consider oral corticosteroids

Consider antibiotics (oral) when signs of bacterial infection are present

Consider noninvasive mechanical ventilation (NIV)

At all times:

- Monitor fluid balance
- · Consider subcutaneous heparin or low molecular weight heparin for thromboembolism prophylaxis
- · Identify and treat associated conditions (e.g., heart failure, arrhythmias, pulmonary embolism etc.)

^{*}Local resources need to be considered

^{*}Local resources need to be considered

Open Forum

Share an idea. Anything you need help with?
What's new in your
Virginia Health District?
Any announcements?

VDH Dashboard Snapshot

https://www.vdh.virginia.gov/coronavirus/see-the-numbers/covid-19-in-virginia/

ED COVID
rates are least
in Eastern VA

Itccn.vcu.edu

VDH Dashboard Snapshot

Case Rate per 100,000 by Age Group - 35 Selected Districts - Past 13 Weeks

2.82 percent of inpatient beds in use for COVID-19 for the week ending 02/17/2024

4 week trend in percent of total inpatient beds used by COVID-19 patients

Accreditation

JOHNY ACCRETIC PROVIDER - MINISTERIO CONTRACTOR CONTRAC	In support of improving patient care, VCU Health Continuing Education is jointly accredited by the Accreditation Council for Continuing Medical Education (ACCME), the Accreditation Council for Pharmacy Education (ACPE), and the American Nurses Credentialing Center (ANCC), to provide continuing education for the healthcare team.
	VCU Health designates this live activity for a maximum of 1.00 AMA PRA Category 1 CreditsTM . Physicians should claim only the credit commensurate with the extent of their participation in the activity.
	VCU Health Continuing Education designates this activity for a maximum of 1.00 ANCC contact hours. Nurses should claim only the credit commensurate with the extent of their participation in the activity.
MPI CATEGORY 1	VCU Health Continuing Education has been authorized by the American Academy of PAs (AAPA) to award AAPA Category 1 CME credit for activities planned in accordance with AAPA CME Criteria. This activity is designated for 1.00 AAPA Category 1 CME credits. PAs should only claim credit commensurate with the extent of their participation.

Disclosure of Financial Relationships

Disclosure of Commercial Support:

We acknowledge that no commercial or in-kind support was provided for this activity.

Claiming Credit

Submit Attendance

- 1. If you have **not participated in a VCU Health CE program** in the past:
 - a. Go to vcu.cloud-cme.com to create an account make sure to add your cell phone number
- 2. Once you have registered or if you have participated before:
 - a. Text the course code to (804) 625-4041.
 - b. The course code for today's event is: ##### (within 5 days of the event)

OR

Complete Evaluation & Claim Credit, (within 60 days of the event)

- 1) Go to https://vcu.cloud-cme.com
- 2) Sign in using email address used above
- 3) Click "My CE"
- 4) Click "Evaluations and Certificates"

 Need help? ceinfo@vcuhealth.org

- 1) Open the CloudCME app on your device
- 2) Click "My Evaluations"
- Click the name of the activity to complete evaluation

Itccn.vcu.edu

Thank you for joining us!

Next Newsletter - coming to you in March

Next Monthly Forum - Wednesday, March 20, 2024, 4-5 pm

Your Calendar Link - In the Zoom Registration Confirmation email you received today, there's a calendar link to update your calendar for future meetings.

On your way out of our meeting today, kindly answer a brief feedback survey.

Stay in touch! Email us at ltccn@vcu.edu

Invite your colleagues! They can register at <u>ltccn.vcu.edu</u>

Disclosures

The speakers and presenters for today have no relevant financial conflicts of interest.

Funding Disclosure: This work is supported by the irginia Department of Health, Office of Epidemiology, Division of Healthcare Associated Infections (HAI) and Antimicrobial Resistance (AR) Program and the Centers for Disease Control and Prevention, Epidemiology and Laboratory Capacity (ELC) Program under federal award number NU50CK000555 and state subrecipient number VCULTC603GY23 in the amount of \$820,002. The content presented is solely the responsibility of the authors and does not necessarily represent the official views of the Centers for Disease Control, the Virginia Department of Health, or Virginia Commonwealth University.

<u>Virginia Long-Term Care Infrastructure Pilot Project (VLIPP)</u> funding will be utilized in nursing homes and long-term care facilities to assist with the ongoing COVID-19 response and to bolster preparedness for emerging infections. The projects are based on identified needs that align with funding objectives.

ltccn.vcu.edu